

Welcome to PyCLibrary’s documentation!

PyCLibrary tries to make wrapping dynamic librariries in python less cumbersome
and more user friendly.

The idea is that most of the things needed such as constant values and function
signatures are already presents in the headers files of the library (which
are usually accessible as they are needed for using the library in C). So
better to use them than copy everything by hand.

PyCLibrary includes 1) a pure-python C parser and 2) an automation library
that uses C header file definitions to simplify the use of c bindings. The
C parser currently processes all macros, typedefs, structs, unions, enums,
function prototypes, and global variable declarations, and can evaluate
typedefs down to their fundamental C types + pointers/arrays/function
signatures. Pyclibrary can automatically build c structs/unions and perform
type conversions when calling functions via cdll/windll.

PyCLibrary tries to present a ffi agnostic API to allow using different
bindings. For the time being only the ctypes based backend is implemented but
a cffi backend should be possible to implement (the rational for it would be
that the CParser can be used on raw header files which are not always well
supported by the cffi parser).

However if you need to manipulate the C object coming back from the library
which cannot simply be mapped to Python object your code will most likely
not be backend independent so it is discouraged to try to switch between
backends.

PyCLibrary supports Python 2.7 and 3.3+

	Getting started

How to set up PyCLibrary and make your first step with it.

	Architecture References

More references on PyCLibrary internals.

	FAQS

Some questions that might have occurred to others too.

	API references

When all else fails, consult the API docs to find the answer you need.
The API docs also include convenient links to the most definitive
PyCLibrary documentation: the source.

Getting started

Getting started with PyCLibrary is easy. The next sections explain how to do
so.

	Installation
	Testing your installation

	Using the development version

	Basic usage
	Parsing headers
	Caching the parsed files

	Binding the library
	Accessing attributes

	Calling functions

	Creating and passing arrays

	Configuration
	Specifying headers and libraries locations

	Manual initialization

Installation

Contents

	Installation

	Testing your installation

	Using the development version

Installing PyCLibrary is straightforward. It is a pure python package and can
be installed using pip (NB : for the time being there is no PyPI package so you
must get a copy from github see using_dev):

$ pip install pyclibrary

It has a single mandatory dependency : pyparsing [https://github.com/pyparsing/pyparsing/].

In order to run the testsuite you will also need py.test and if you want to
build the docs you will need sphinx (>1.3 current development version). All
those can be installed through pip using the following commands:

$ pip install py.test
$ pip install sphinx

Testing your installation

To test your installation open a python interpreter and import pyclibrary.

>>> import pyclibrary

The last command will have no output if everything went well.

If you encounter any problem, take a look at the FAQS. If everything
fails, feel free to open an issue in our issue_tracker [http://github.com/MatthieuDartiailh/pyclibrary/issues].

Using the development version

You can install the development version directly from Github [http://github.com]:

$ pip install https://github.com/MatthieuDartiailh/pyclibrary/zipball/master

Basic usage

Contents

	Basic usage

	Parsing headers

	Caching the parsed files

	Binding the library

	Accessing attributes

	Calling functions

	Creating and passing arrays

This guide tries to give a simple overview of PyCLibrary capabilities. At the
end it refers to C concepts as some basic knowledge of them might be necessary
when interfacing a C library but do not be scared by them.

Parsing headers

The first step you should take when trying to interface with a dynamic library
using PyCLibrary is to check that it can correctly Parse the header files:

>>> from pyclibrary import CParser
>>> parser = CParser(['first_header_file_path','second_header_file_path'])
>>> print(parser)

If the second command does not raise any issue it means that it successfully
parsed the headers. However even in such a case the parser might have
overlooked some definitions. The last command will print all the definitions
extracted from the header files grouped by categories :

	types : the custom types defined in the headers

	variables : the global variable of the libraries.

	fnmacros : the function macros declared in the headers (Those are used by
the compiler preprocessor and you have no reason to access them).

	macros : the macros defined in the headers.

	structs : the custom structures used by the libraries.

	unions : the customs unions used by the libraries.

	enums : the enumerations defined in the headers.

	functions : the functions you will be able to call.

	values : the global values you may need to access (mainly macro values
which are used to provide a more descriptive representation of integer
values)

You can quickly go over them and check if something is missing.

Note

On windows, it is generally a good idea to include some standards windows
definition. To do so pass the result of calling the win_defs function to
the parser as second argument (copy_from keyword).

Note

The CParser does not handle the
include directive (for the time being) so you must pass all the header
files.

Caching the parsed files

As parsing the headers is a fairly expensive process, it is a good idea to
cache the parsed definition.

To cache definitions, you simply have to provide a path pointing to the file
in which to save the parsed definitions to the parser (cache keyword). If the
cache file already exists, it is loaded only if the version of the parser
matches (which allows update to always take effects) and if the arguments
passed to the CParser are the same
(if you ask for different replacements in your file it will trigger a
re-parsing).

The previous procedure should be sufficient in general but in some cases you
might want a finer control on the parsing procedure. See for a more detailed
explanation.

Binding the library

Once you know that you can correctly parse the headers of your library, you are
ready to bind it. To do so, you must create a
CLibrary object:

 >>> from pyclibrary import CLibrary
 >>> clib = CLibrary('mylibrary.dll', parser, prefix='Lib_',
>>> lock_calls=False, convention='cdll', backend='ctypes')

In order to work, the CLibrary
needs the name or the path to the library to use (a .dll on Windows, a .so on
Linux), and either an initialized parser or a list of header files which will
be parsed for definitions. When you provide simply name of the library it is
looked for in standard locations according to your OS. All other keyword
arguments are optionals :

	
	prefix :
	prefix or list of prefix often found in the library function or
attributes names. This allow you to access to them without the prefix,
while not preventing to use the complete name.

	
	lock_calls :
	when this flag is set all calls to the dll are made thread
safe by acquiring a lock before calling and releasing it after. This can
be useful if the library is not thread-safe.

	
	convention :
	this only applies on windows platform where the calling convention can
be either ‘cdll’ (Linux standard), windll or oledll. Note that all
conventions might not be supported on all platforms and with all
backends.

	
	backend :
	the name of the backend to use when binding to the library.
Currently the only backend relies on the ctypes library, in the future
one using the cffi library might be used.

All other keyword arguments will be passed to when creating a
CParser if a list of headers files
is passed.

You now have access to all the attributes, types and functions defined by the
library.

Accessing attributes

The preferred way to access library attributes is simply by using the .
syntax:

>>> clib.HIGH_FLAG
1

This simply looked for into all the known definition for a HIGH_FLAG value or
Lib_HIGH_FLAG value as we specified ‘Lib_’ as a prefix. This will work for
values, functions, types, structures, unions, enumerations but not for macros
definitions.

But you can also specify what kind of object you are looking for using the
following syntax:

>>> clib('values', 'HIGH_FLAG')
1

The recognized values for the first argument are the following : ‘values’,
‘functions’, ‘types’, ‘structs’, ‘unions’, or ‘enums’. This method is roughly
equivalent to the first one. It is however useful if for example one needs to
access to an enumeration type : when looking for it the entries found in values
which specifies the mapping between names and their integer value is always
found first (as it is most of the time what is useful), so if you want the type
you need to specify it explicitly.

The third way gives access directly to the parser definitions:

>>>clib['values']['HIGH_FLAG']
1

This is equivalent to doing:

>>>parser.defs['values']['HIGH_FLAG']

Calling functions

One usual behavior of C function is to return a kind of flag signaling that
the operation while returning the real values of interest by updating pointers
which have been passed to them. Most of the time those pointer does not need
to be initialized to any particular value and it is often tedious to create
them. PyCLibrary tries to make that kind of things easier. Here are some of the
key concept used :

	function always return a
CallResult object which
encapsulates the return value of the function and all the arguments passed to
it.

	when calling a function you can use keyword arguments based on the C
signature of the function.

	you can omit all uninitialized pointers the function expects, PyCLibrary
will create them for you and they will be accessible in the
CallResult
object.

Let’s consider a C function whose signature is the following :

RETURN_CODE get_library_version(U8 *Major,U8 *Minor,U8 *Revision);

Once wrapped by PyCLibrary this function can be called as follows:

>>> ret = clib.get_library_version()
>>> ret()
1 # This is the RETURN_CODE value, 1 means the call succeeded
>>> ret[0]
0 # This is the major version.
>>> ret['Minor']
1

Some explanations :

	first we call the function, not providing any pointers and store the
CallResult object.

	then we query the return value by calling the
CallResult object.
When doing this PyCLibrary tries to convert the value to a nice Python
equivalent and if it is not possible it returns the underlying backend
object.

	finally we access to the major and minor version info. To access to the
major version info we query the argument using its index, for the minor
we use the name of the argument.

Sometimes even if a Python equivalent exists you might need to access to raw
backend objects. You can find it in the attribute
CallResult.rval
for the return value and in
CallResult.rval for the
argument (that you passed and the created pointers).

Note that all the pointers automatically created by PyCLibrary are dereferenced
automatically so that you get the value to which they point to, when accessed
through the ‘[]’ operation, or using tuple unpacking see below.

As this syntax is not always convenient when we need to proceed to many calls
the CallResult object can be
used as an iterator to allow unpacking:

>>> res, (major, minor, rev) = clib.get_library_version()
>>> '{}.{}.{}'.format(major, minor, rev)
'0.1.0'

Note that the arguments are unpacked as a tuple (actually a generator) which
makes it easy to ignore it if the function directly return the value you want:

>>> val, _ = clib.get_value()
2

Note

The value auto-generated are pointers but are not returned as such because
most of the time it is the stored value that is needed. For pointers of
pointers which generally represents arrays, it dereference only the
external pointer so that the array element can be accessed using pointer[i]
(which is a valid C syntax).
This magic happens only with auto-generated values, if you manually pass a
pointer the value in the arguments will be a pointer.

Creating and passing arrays

One special case of passing values by reference (ie using a pointer) is the
case of the arrays. Here two solutions exist depending on the behavior of the
library :

	the function expects a pointer to pointer and handles itself the memory
allocation.

	the function expects a pointer to an already existing array, and will use
it or modify it.

In the first case, you can let PyCLibrary handle everything, you will get a
pointer that you can index like any iterable (but you can’t determine its
length, you must get that information from the library in another way). In the
second case you cannot just let PyCLibrary creates the pointer because when
the function will write in the array it might access memory it should not and
corrupt data because the memory was never allocated. For this case, PyCLibrary
provides the build_array
helper function. This function takes as arguments the library object, the type
of the data to store in the array (as a str or as type object) and the shape of
the array to build (multidimensional arrays are supported), and optionally an
initialization iterable (for one dimensional arrays only).

Let’s consider two functions:

void fill_array(int *array);
void allocate_array(int size, int **array);

Note that without reading the docs, you cannot know that fill_array needs an
array and not simply a pointer to an integer. You must read the docs !

And here it the interfacing code:

>>> arr = build_array(clib, 'int', 5)
>>> _, (arr) = fill_array(arr)
>>> [arr[i] for i in range(5)]
[0, 10, 20, 21, 55]
>>> _, (size, arr) = allocate_array()
>>> [arr[i] for i in range(size)]
[-1, 2, 5, 8, -9]

This is fairly straightforward, simply note that you can directly pass the
array in place of a pointer, the backend handle the conversion.

Configuration

Contents

	Configuration

	Specifying headers and libraries locations

	Manual initialization

Most of the time the default configuration of PyCLibrary should be sufficient.
However it may not always be so. Here are some ways to tweak it to your needs.

Specifying headers and libraries locations

When parsing numerous headers or using PyCLibrary in an application, it might
prove tedious to always specifies the full path to headers files (the same can
apply to libraries if their not located in a standard location). PyCLibrary
allows you to add folder in which to look into for headers and libraries.

Consider a case in which you store the headers in a ‘headers’ folder by your
script, and the library into a ‘lib’ folder :

import os
from pyclibrary import add_header_locations, add_library_locations

curr_dir = os.path.dirname(__file__)
add_header_locations([os.path.join(curr_dir, 'headers')])
add_library_locations([os.path.join(curr_dir, 'lib')])

parser = CParser('my_lib_header.h')
clib = CLibrary('my_lib.so', parser)

Note

PyCLibrary does not explore sub-folders when looking for headers and
library (it might in the future).

Manual initialization

The first time you create a CParser or CLibrary, PyCLibrary does some
initialization based on your OS. It basically defines the standard known ctypes
and the specific modifiers supported by the compiler (things like __stdcall
for example).

You can manually initialize the CParser and the CLibrary by calling the
initialization function found in pyclibrary and specifies your own types and
modifiers. You can also use the auto_init function to add things on top of your
OS specific stuff.

Architecture References

UNDER CONSTRUCTION

FAQS

Contributing to PyCLibrary

You can contribute in different ways:

Report issues

You can report any issues with the package, the documentation to the PyCLibrary
issue tracker [https://github.com/MatthieuDartiailh/pyclibrary/issues]. Also feel free to submit feature requests, comments or
questions.

Contribute code

To contribute fixes, code or documentation to PyCLibrary, fork PyCLibrary in
github [http://github.com/MatthieuDartiailh/pyclibrary] and submit the changes using a pull request.

In any case, feel free to use the issue tracker [https://github.com/MatthieuDartiailh/pyclibrary/issues] to discuss ideas for new
features or improvements.

API references

Subpackages

	pyclibrary.backends package
	Submodules
	pyclibrary.backends.ctypes module
	make_mess()

	CTypesCLibrary
	CTypesCLibrary.Null

	CTypesCLibrary.backend

	init_clibrary()

	identify_library()

	get_library_path()

Submodules

pyclibrary.c_library module

Proxy to library object, allowing automatic type conversion and
function calling based on C header definitions.

	
pyclibrary.c_library.make_mess(mess)

	

	
class pyclibrary.c_library.CLibraryMeta(name, bases, dct)

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Meta class responsible for determining the backend and ensuring no
duplicates libraries exists.

	
backends = {'ctypes': <class 'pyclibrary.backends.ctypes.CTypesCLibrary'>}

	

	
libs = <WeakValueDictionary>

	

	
class pyclibrary.c_library.CLibrary(lib, *args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The CLibrary class is intended to automate much of the work in using
ctypes by integrating header file definitions from CParser. This class
serves as a proxy to a backend, adding a few features:

	allows easy access to values defined via CParser.

	automatic type conversions for function calls using CParser function
signatures.

	creates ctype classes based on type definitions from CParser.

Initialize using a ctypes shared object and a CParser:
>>> headers = CParser.winDefs()
>>> lib = CLibrary(windll.User32, headers)

There are 3 ways to access library elements:

	
	lib(type, name):
	type can be one of ‘values’, ‘functions’, ‘types’, ‘structs’,
‘unions’, or ‘enums’. Returns an object matching name. For values,
the value from the headers is returned. For functions, a callable
object is returned that handles automatic type conversion for
arguments and return values. For structs, types, and enums, a
ctypes class is returned matching the type specified.

	
	lib.name:
	searches in order through values, functions, types, structs,
unions, and enums from header definitions and returns an object for
the first match found. The object returned is the same as returned
by lib(type, name). This is the preferred way to access elements
from CLibrary, but may not work in some situations (for example, if
a struct and variable share the same name).

	
	lib[type]:
	Accesses the header definitions directly, returns definition
dictionaries based on the type requested. This is equivalent to
headers.defs[type].

	Parameters

	
	lib – Library object.

	headers (unicode or CParser) – Path to the header files or CParser holding all the definitions.

	prefix (unicode, optional) – Prefix to remove from all definitions.

	lock_calls (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to lock the calls to the underlying library. This should
be used only if the underlying library is not thread safe.

	convention ({'cdll', 'windll', 'oledll'}) – Calling convention to use. Not all backends supports all calling
conventions.

	backend (unicode, optional) – Name of the backend to use. This is ignored if an already initialised
library object is passed.
NB : this kwarg is used by the metaclass.

	kwargs – Additional keywords argument which are passed to the CParser if one
is created.

	
Null = <object object>

	Balise to use when a NULL pointer is needed

	
class pyclibrary.c_library.CFunction(lib, func, sig, name, lock_call)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper object for a function from the library.

	
arg_c_type(arg)

	Return the type required for the specified argument.

	Parameters

	arg (int [https://docs.python.org/3/library/functions.html#int] or unicode) – Name or index of the argument whose type should be returned.

	
pretty_signature()

	

	
class pyclibrary.c_library.CallResult(lib, rval, args, sig, guessed)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for bundling results from C function calls.

Allows access to the function value as well as all of the arguments, since
the function call will often return extra values via these arguments:

	Original ctype objects can be accessed via result.rval or result.args

	Python values carried by these objects can be accessed using ()

To access values:

	The return value: ()

	The nth argument passed: [n]

	The argument by name: [‘name’]

	All values that were auto-generated: .auto()

The class can also be used as an iterator, so that tuple unpacking is
possible:

>>> ret, (arg1, arg2) = lib.run_some_function(...)

	
lib

	Reference to the CLibrary to which the function that created this
object balongs.

	Type

	CLibrary

	
rval

	Value returned by the C function.

	
args

	Arguments passed to the C function.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
sig

	Signature of the function which created this object.

	
guessed

	Pointers that were created on the fly.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
find_arg(arg)

	Find argument based on name.

	
auto()

	Return a list of all the auto-generated values.

Pointers are dereferenced.

	
pyclibrary.c_library.cast_to(lib, obj, typ)

	Cast obj to a new type.

	Parameters

	
	lib (CLibrary) – Reference to the library to which the object ‘belongs’. This is needed
as the way to get the address depends on the backend.

	obj – Object whose address should be returned.

	typetype or string
	Type object or string which will be used to determine the type of
the array elements.

	
pyclibrary.c_library.build_array(lib, typ, size, vals=None)

	Build an array of the specified type and the specified size.

	Parameters

	
	lib (CLibrary) – Reference to the library with which this object will be used. This is
needed as the way to build the array depends on the backend.

	type (type [https://docs.python.org/3/library/functions.html#type] or string) – Type object or string which will be used to determine the type of
the array elements.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Dimensions of the array to create.

	vals (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Initial values with which to fill the array.

pyclibrary.c_parser module

Used for extracting data such as macro definitions, variables, typedefs, and
function signatures from C header files.

	
pyclibrary.c_parser.win_defs(version='1500')

	Loads selection of windows headers included with PyCLibrary.

These definitions can either be accessed directly or included before
parsing another file like this:
>>> windefs = c_parser.win_defs()
>>> p = c_parser.CParser(“headerFile.h”, copy_from=windefs)

Definitions are pulled from a selection of header files included in Visual
Studio (possibly not legal to distribute? Who knows.), some of which have
been abridged because they take so long to parse.

	Parameters

	version (unicode) – Version of the MSVC to consider when parsing.

	Returns

	parser – CParser containing all the infos from te windows headers.

	Return type

	CParser

	
class pyclibrary.c_parser.CParser(files=None, copy_from=None, replace=None, process_all=True, cache=None, check_cache_validity=True, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for parsing C code to extract variable, struct, enum, and function
declarations as well as preprocessor macros.

This is not a complete C parser; instead, it is meant to simplify the
process of extracting definitions from header files in the absence of a
complete build system. Many files will require some amount of manual
intervention to parse properly (see ‘replace’ and extra arguments)

	Parameters

	
	files (str [https://docs.python.org/3/library/stdtypes.html#str] or iterable, optional) – File or files which should be parsed.

	copy_from (CParser or iterable of CParser, optional) – CParser whose definitions should be included.

	replace (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Specify som string replacements to perform before parsing. Format is
{‘searchStr’: ‘replaceStr’, …}

	process_all (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether files should be parsed immediatly. True by
default.

	cache (unicode, optional) – Path of the cache file from which to load definitions/to which save
definitions as parsing is an expensive operation.

	check_cache_validity (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag indicating whether to perform validity checking when using a cache file. This is useful
in a scenario where the python wrapper needs to be used without access to the headers

	kwargs – Extra parameters may be used to specify the starting state of the
parser. For example, one could provide a set of missing type
declarations by types={‘UINT’: (‘unsigned int’), ‘STRING’: (‘char’, 1)}
Similarly, preprocessor macros can be specified: macros={‘WINAPI’: ‘’}

Example

Create parser object, load two files

>>> p = CParser(['header1.h', 'header2.h'])

Remove comments, preprocess, and search for declarations

>>> p.process_ all()

Just to see what was successfully parsed from the files

>>> p.print_all()

Access parsed declarations

>>> all_values = p.defs['values']
>>> functionSignatures = p.defs['functions']

To see what was not successfully parsed

>>> unp = p.process_all(return_unparsed=True)
>>> for s in unp:
 print s

	
cache_version = 2

	

	
process_all(cache=None, return_unparsed=False, print_after_preprocess=False, check_cache_validity=True)

	Remove comments, preprocess, and parse declarations from all files.

This operates in memory, and thus does not alter the original files.

	Parameters

	
	cache (unicode, optional) – File path where cached results are be stored or retrieved. The
cache is automatically invalidated if any of the arguments to
__init__ are changed, or if the C files are newer than the cache.

	return_unparsed (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Passed directly to parse_defs.

	print_after_preprocess (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true prints the result of preprocessing each file.

	Returns

	results – List of the results from parse_defs.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
load_cache(cache_file, check_validity=False)

	Load a cache file.

Used internally if cache is specified in process_all().

	Parameters

	
	cache_file (unicode) – Path of the file from which the cache should be loaded.

	check_validity (bool [https://docs.python.org/3/library/functions.html#bool], optional) –
	If True, then run several checks before loading the cache:
	
	cache file must not be older than any source files

	cache file must not be older than this library file

	options recorded in cache must match options used to initialize
CParser

	Returns

	result – Did the loading succeeded.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
import_dict(data)

	Import definitions from a dictionary.

The dict format should be the same as CParser.file_defs.
Used internally; does not need to be called manually.

	
write_cache(cache_file)

	Store all parsed declarations to cache. Used internally.

	
find_headers(headers)

	Try to find the specified headers.

	
load_file(path, replace=None)

	Read a file, make replacements if requested.

Called by __init__, should not be called manually.

	Parameters

	
	path (unicode) – Path of the file to load.

	replace (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dictionary containing strings to replace by the associated value
when loading the file.

	
print_all(filename=None)

	Print everything parsed from files. Useful for debugging.

	Parameters

	filename (unicode, optional) – Name of the file whose definition should be printed.

	
remove_comments(path)

	Remove all comments from file.

Operates in memory, does not alter the original files.

	
preprocess(path)

	Scan named file for preprocessor directives, removing them while
expanding macros.

Operates in memory, does not alter the original files.

Currently support :
- conditionals : ifdef, ifndef, if, elif, else (defined can be used
in a if statement).
- definition : define, undef
- pragmas : pragma

	
eval_preprocessor_expr(expr)

	

	
process_macro_defn(t)

	Parse a #define macro and register the definition.

	
compile_fn_macro(text, args)

	Turn a function macro spec into a compiled description.

	
expand_macros(line)

	Expand all the macro expressions in a string.

Faulty calls to macro function are left untouched.

	
expand_fn_macro(name, text)

	Replace a function macro.

	
parse_defs(path, return_unparsed=False)

	Scan through the named file for variable, struct, enum, and function
declarations.

	Parameters

	
	path (unicode) – Path of the file to parse for definitions.

	return_unparsed (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, return a string of all lines that failed to match (for
debugging purposes).

	Returns

	tokens – Entire tree of successfully parsed tokens.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
build_parser()

	Builds the entire tree of parser elements for the C language (the
bits we support, anyway).

	
process_declarator(decl)

	Process a declarator (without base type) and return a tuple
(name, [modifiers])

See process_type(…) for more information.

	
process_type(typ, decl)

	Take a declarator + base type and return a serialized name/type
description.

The description will be a list of elements (name, [basetype, modifier,
modifier, …]):

	name is the string name of the declarator or None for an abstract
declarator

	basetype is the string representing the base type

	modifiers can be:

	* : pointer (multiple pointers *** allowed)

	& : reference

	__X : calling convention (windows only). X can be cdecl or
stdcall

	list : array. Value(s) indicate the length of each array, -1
for incomplete type.

	tuple : function, items are the output of processType for each
function argument.

Examples

	int x[10] => (‘x’, [‘int’, [10], ‘’])

	char fn(int x) => (‘fn’, [‘char’, [(‘x’, [‘int’])]])

	struct s (*)(int, int*) =>
(None, [“struct s”, ((None, [‘int’]), (None, [‘int’, ‘*’])), ‘*’])

	
process_enum(s, l, t)

	

	
process_function(s, l, t)

	Build a function definition from the parsing tokens.

	
packing_at(line)

	Return the structure packing value at the given line number.

	
process_struct(s, l, t)

	

	
process_variable(s, l, t)

	

	
process_typedef(s, l, t)

	

	
eval_expr(toks)

	Evaluates expressions.

Currently only works for expressions that also happen to be valid
python expressions.

	
eval(expr, *args)

	Just eval with a little extra robustness.

	
add_def(typ, name, val)

	Add a definition of a specific type to both the definition set for
the current file and the global definition set.

	
rem_def(typ, name)

	Remove a definition of a specific type to both the definition set
for the current file and the global definition set.

	
is_fund_type(typ)

	Return True if this type is a fundamental C type, struct, or
union.

ATTENTION: This function is legacy and should be replaced by
Type.is_fund_type()

	
eval_type(typ)

	Evaluate a named type into its fundamental type.

ATTENTION: This function is legacy and should be replaced by
Type.eval()

	
find(name)

	Search all definitions for the given name.

	
find_text(text)

	Search all file strings for text, return matching lines.

pyclibrary.errors module

Errors that can happen during parsing or binding.

	
exception pyclibrary.errors.PyCLibError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception for all PyCLibrary exceptions.

	
exception pyclibrary.errors.DefinitionError

	Bases: PyCLibError

Excepion signaling that one definition found in the header is malformed
or meaningless.

pyclibrary.init module

Initialisation routines.

Those should be run before creating a CParser and can be run only once. They
are used to declare additional types and modifiers for the parser.

	
pyclibrary.init.init(extra_types=None, extra_modifiers=None)

	Init CParser and CLibrary classes.

	Parameters

	
	extra_types (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – typeName->c_type pairs to extend typespace.

	extra_modifiers (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of modifiers, such as ‘__stdcall’.

	
pyclibrary.init.auto_init(extra_types=None, extra_modifiers=None, os=None)

	Init CParser and CLibrary classes based on the targeted OS.

	Parameters

	
	extra_types (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Extra typeName->c_type pairs to extend typespace.

	extra_modifiers (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of extra modifiers, such as ‘__stdcall’.

	os ({'win32', 'linux2', 'darwin'}, optional) – OS for which to prepare the system. If not specified sys is used to
identify the OS.

pyclibrary.utils module

Utility functions to retrieve headers or library path and architecture.

Most of those function have been taken or adapted from the ones found in
PyVISA.

Functions

find_header : Find the path to a header file.
find_library : Find the path to a shared library from its name.

	
pyclibrary.utils.add_header_locations(dir_list)

	Add directories in which to look for header files.

	
pyclibrary.utils.find_header(h_name, dirs=None)

	Look for a header file.

Headers are looked for in the directories specified by the user using the
add_header_locations function, in the headers directory of PyCLibrary, and
in the standards locations according to the operation system.

	Parameters

	
	h_name (unicode) – Name of the header to retrieve (should include the “.h”)

	dirs (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of directory which should be searched for the header in addition
to the default ones.

	Returns

	path – Path to the header file.

	Return type

	unicode

:raises OSError : if no matching file can be found.:

	
pyclibrary.utils.add_library_locations(dir_list)

	Add directories in which to look for libraries.

	
pyclibrary.utils.find_library(name, dirs=None)

	Look for a library file.

Libraries are looked for in the directories specified by the user using the
add_library_locations function, and using the find_library function found
the thirdparty package.

	Parameters

	
	name (unicode) – Name of the library to retrieve (should include the extension)

	dirs (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of directory which should be searched for the library before
ressorting to using thirdparty.find_library.

	Returns

	path – Path to the library file.

	Return type

	unicode

:raises OSError : if no matching file can be found.:

	
class pyclibrary.utils.LibraryPath(path, found_by='auto')

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str]

	
property arch

	

	
property is_32bit

	

	
property is_64bit

	

	
property bitness

	

	
pyclibrary.utils.get_arch(filename)

	

	
pyclibrary.utils.get_shared_library_arch(filename)

	

	
pyclibrary.utils.check_output(*popenargs, **kwargs)

	Run command with arguments and return its output as a byte string.

Backported from Python 2.7 as it’s implemented as pure python on stdlib.

>>> check_output(['/usr/bin/python', '--version'])
Python 2.6.2

pyclibrary.backends package

Submodules

pyclibrary.backends.ctypes module

Proxy to both CHeader and ctypes, allowing automatic type conversion and
function calling based on C header definitions.

	
pyclibrary.backends.ctypes.make_mess(mess)

	

	
class pyclibrary.backends.ctypes.CTypesCLibrary(lib, *args, **kwargs)

	Bases: CLibrary

The CLibrary class is intended to automate much of the work in using
ctypes by integrating header file definitions from CParser.

	This class serves as a proxy to a ctypes object, adding a few features:
	
	allows easy access to values defined via CParser

	automatic type conversions for function calls using CParser function
signatures

	creates ctype classes based on type definitions from CParser

	Initialize using a ctypes shared object and a CParser:
	headers = CParser.winDefs()
lib = CLibrary(windll.User32, headers)

	There are 3 ways to access library elements:
	
	lib(type, name):
	type can be one of ‘values’, ‘functions’, ‘types’, ‘structs’,
‘unions’, or ‘enums’. Returns an object matching name. For values,
the value from the headers is returned. For functions, a callable
object is returned that handles automatic type conversion for
arguments and return values. For structs, types, and enums, a
ctypes class is returned matching the type specified.

	lib.name:
	searches in order through values, functions, types, structs,
unions, and enums from header definitions and returns an object for
the first match found. The object returned is the same as returned
by lib(type, name). This is the preferred way to access elements
from CLibrary, but may not work in some situations (for example, if
a struct and variable share the same name).

	lib[type]:
	Accesses the header definitions directly, returns definition
dictionaries based on the type requested. This is equivalent to
headers.defs[type].

	Parameters

	
	lib – Library object.

	headers (CParser) – CParser holding all the definitions.

	prefix (unicode) – Prefix to remove from all definitions.

	fix_case (bool [https://docs.python.org/3/library/functions.html#bool]) – Should name be converted from camelCase to python PEP8 compliants
names.

	
Null = <object object>

	Balise to use when a NULL pointer is needed

	
backend = 'ctypes'

	Id of the backend

	
pyclibrary.backends.ctypes.init_clibrary(extra_types={})

	

	
pyclibrary.backends.ctypes.identify_library(lib)

	

	
pyclibrary.backends.ctypes.get_library_path(lib)

	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyclibrary	

 	
 	
 pyclibrary.backends.ctypes	

 	
 	
 pyclibrary.c_library	

 	
 	
 pyclibrary.c_parser	

 	
 	
 pyclibrary.errors	

 	
 	
 pyclibrary.init	

 	
 	
 pyclibrary.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | W

A

 	
 	add_def() (pyclibrary.c_parser.CParser method)

 	add_header_locations() (in module pyclibrary.utils)

 	add_library_locations() (in module pyclibrary.utils)

 	arch (pyclibrary.utils.LibraryPath property)

 	
 	arg_c_type() (pyclibrary.c_library.CFunction method)

 	args (pyclibrary.c_library.CallResult attribute)

 	auto() (pyclibrary.c_library.CallResult method)

 	auto_init() (in module pyclibrary.init)

B

 	
 	backend (pyclibrary.backends.ctypes.CTypesCLibrary attribute)

 	backends (pyclibrary.c_library.CLibraryMeta attribute)

 	
 	bitness (pyclibrary.utils.LibraryPath property)

 	build_array() (in module pyclibrary.c_library)

 	build_parser() (pyclibrary.c_parser.CParser method)

C

 	
 	cache_version (pyclibrary.c_parser.CParser attribute)

 	CallResult (class in pyclibrary.c_library)

 	cast_to() (in module pyclibrary.c_library)

 	CFunction (class in pyclibrary.c_library)

 	check_output() (in module pyclibrary.utils)

 	
 	CLibrary (class in pyclibrary.c_library)

 	CLibraryMeta (class in pyclibrary.c_library)

 	compile_fn_macro() (pyclibrary.c_parser.CParser method)

 	CParser (class in pyclibrary.c_parser)

 	CTypesCLibrary (class in pyclibrary.backends.ctypes)

D

 	
 	DefinitionError

E

 	
 	eval() (pyclibrary.c_parser.CParser method)

 	eval_expr() (pyclibrary.c_parser.CParser method)

 	eval_preprocessor_expr() (pyclibrary.c_parser.CParser method)

 	
 	eval_type() (pyclibrary.c_parser.CParser method)

 	expand_fn_macro() (pyclibrary.c_parser.CParser method)

 	expand_macros() (pyclibrary.c_parser.CParser method)

F

 	
 	find() (pyclibrary.c_parser.CParser method)

 	find_arg() (pyclibrary.c_library.CallResult method)

 	find_header() (in module pyclibrary.utils)

 	
 	find_headers() (pyclibrary.c_parser.CParser method)

 	find_library() (in module pyclibrary.utils)

 	find_text() (pyclibrary.c_parser.CParser method)

G

 	
 	get_arch() (in module pyclibrary.utils)

 	get_library_path() (in module pyclibrary.backends.ctypes)

 	
 	get_shared_library_arch() (in module pyclibrary.utils)

 	guessed (pyclibrary.c_library.CallResult attribute)

I

 	
 	identify_library() (in module pyclibrary.backends.ctypes)

 	import_dict() (pyclibrary.c_parser.CParser method)

 	init() (in module pyclibrary.init)

 	
 	init_clibrary() (in module pyclibrary.backends.ctypes)

 	is_32bit (pyclibrary.utils.LibraryPath property)

 	is_64bit (pyclibrary.utils.LibraryPath property)

 	is_fund_type() (pyclibrary.c_parser.CParser method)

L

 	
 	lib (pyclibrary.c_library.CallResult attribute)

 	LibraryPath (class in pyclibrary.utils)

 	
 	libs (pyclibrary.c_library.CLibraryMeta attribute)

 	load_cache() (pyclibrary.c_parser.CParser method)

 	load_file() (pyclibrary.c_parser.CParser method)

M

 	
 	make_mess() (in module pyclibrary.backends.ctypes)

 	(in module pyclibrary.c_library)

 	
 module

 	pyclibrary.backends.ctypes

 	pyclibrary.c_library

 	pyclibrary.c_parser

 	pyclibrary.errors

 	pyclibrary.init

 	pyclibrary.utils

N

 	
 	Null (pyclibrary.backends.ctypes.CTypesCLibrary attribute)

 	(pyclibrary.c_library.CLibrary attribute)

P

 	
 	packing_at() (pyclibrary.c_parser.CParser method)

 	parse_defs() (pyclibrary.c_parser.CParser method)

 	preprocess() (pyclibrary.c_parser.CParser method)

 	pretty_signature() (pyclibrary.c_library.CFunction method)

 	print_all() (pyclibrary.c_parser.CParser method)

 	process_all() (pyclibrary.c_parser.CParser method)

 	process_declarator() (pyclibrary.c_parser.CParser method)

 	process_enum() (pyclibrary.c_parser.CParser method)

 	process_function() (pyclibrary.c_parser.CParser method)

 	process_macro_defn() (pyclibrary.c_parser.CParser method)

 	process_struct() (pyclibrary.c_parser.CParser method)

 	process_type() (pyclibrary.c_parser.CParser method)

 	process_typedef() (pyclibrary.c_parser.CParser method)

 	
 	process_variable() (pyclibrary.c_parser.CParser method)

 	PyCLibError

 	
 pyclibrary.backends.ctypes

 	module

 	
 pyclibrary.c_library

 	module

 	
 pyclibrary.c_parser

 	module

 	
 pyclibrary.errors

 	module

 	
 pyclibrary.init

 	module

 	
 pyclibrary.utils

 	module

R

 	
 	rem_def() (pyclibrary.c_parser.CParser method)

 	
 	remove_comments() (pyclibrary.c_parser.CParser method)

 	rval (pyclibrary.c_library.CallResult attribute)

S

 	
 	sig (pyclibrary.c_library.CallResult attribute)

W

 	
 	win_defs() (in module pyclibrary.c_parser)

 	
 	write_cache() (pyclibrary.c_parser.CParser method)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyCLibrary’s documentation!

_static/plus.png

_static/file.png

_static/minus.png

